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Spin density in partially coherent surface-plasmon-polariton vortex fields
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We examine the spin angular momentum (SAM) density associated with the recently introduced [Phys. Rev.
A 100, 053833 (2019)], partially coherent surface-plasmon-polariton (SPP) vortex fields at a metal-air interface.
We show that the vortices appearing in such structured SPP fields induce a SAM density both in the interface
plane and in the direction normal to the interface. We find that the radial and azimuthal SAM densities are
caused solely by the SPP electric-field correlations. However, besides the intrinsic spin component induced by
the complex SPP wave vector, the azimuthal SAM density remarkably carries also a spin component created
by the elementary SPPs comprising the partially coherent vortex field. The normal SAM density, on the other
hand, arises mainly due to the SPP magnetic-field correlations. Our analysis specifically demonstrates that the
state of coherence of the partially coherent SPP vortex field plays an essential role in shaping the SAM density
distributions. Our findings can find applications to near-field particle manipulation and in spin-based integrated
photonic circuit design.
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I. INTRODUCTION

Surface plasmon polaritions (SPPs) have occupied a
central position in nanophotonics [1] due to their unique
physical properties and broad range of attractive multidis-
ciplinary applications [2]. The SPPs are customarily treated
as monochromatic, spatially and temporarily fully coherent
fields, but lately the partial coherence associated with poly-
chromatic SPP fields has been recognized as a powerful tool to
shape their spatial, temporal, and polarization characteristics
[3]. Specially, the paradigm of plasmon coherence engineer-
ing [4] allows the tailoring of structured, partially coherent
SPP fields with desired spatiotemporal statistical attributes
[5,6]. Partially coherent SPP vortex fields, generated by a con-
tinuum of radially propagating SPP modes with a prescribed
initial phase profile and arbitrary inter-SPP correlations, play
a particular role among such newly engineered structured
SPP fields [7]. This is because such surface electromagnetic
fields carry coherence-modulated orbital angular momentum
(OAM) with promise, e.g., for nanoparticle trapping and real-
ization of angular-momentum controlled nanolasers.

At the same time, the spin-orbit interaction phenomena
in plasmonic systems have attracted rapidly growing interest
[8]. Most spin-orbit interaction studies in plasmonics have
focused on the spin (circular polarization) control of the spa-
tial degrees of freedom of SPPs, such as spin-induced phase
dislocations and OAM in SPP fields [9,10], spin-controlled
unidirectional excitation of plasmonic modes [11,12], and
spin-induced plasmonic beam shifts (spin-Hall effect of light)
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[13,14]. The orbit-to-spin degree of freedom [i.e., an orbitally
induced spin angular momentum (SAM)] in plasmonic sys-
tems, on the other hand, has received much less attention
[15–17]. In fact, only recently did Du and coauthors [15] find
that a free-space propagating light beam with OAM can excite
a skyrmionlike structure of local SAM density in an SPP
vortex field. However, to the best of our knowledge, all the
spin-orbit interaction phenomena studied so far in plasmonics
have dealt with fully spatially coherent SPPs.

In this paper, we explore the distributions of orbitally in-
duced SAM densities in the recently introduced, structured
partially coherent SPP vortex fields. We show that the vortex
phases of the excitation light source generate serendipitous
spin components in the partially coherent SPP vortex field. In
particular, we demonstrate that, distinct from the transverse
spin of a single SPP induced by its complex wave vector [18],
the SAM density associated with a partially coherent SPP
vortex field carries an additional azimuthal spin component
created by the correlations among the individual SPP modes
that make up the field. We show generally that the SAM
densities in the interface plane originate exclusively from
the SPP electric-field correlations, whereas the SAM density
normal to the interface plane is predominantly produced by
the SPP magnetic-field correlations. We further analyze the
influence of partial optical coherence in controlling the spatial
distributions (and orientations) of the spin associated with the
random SPP vortex field. Our work thus unveils uncharted
avenues into stochastic plasmonic systems of engineered an-
gular momenta.

This work is organized as follows. In Sec. II, we review
the partially coherent SPP vortex field structure and discuss
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FIG. 1. (a) Synthesis of the partially coherent SPP vortex field
by a continuum of radially propagating SPP modes with a prescribed
initial phase profile and arbitrary correlations at a metal-air interface.
The constituent SPPs are excited at points r0(θ ) along a circular
ring and propagate toward the ring center in the direction êρ , where
θ ∈ [0, 2π ) is the azimuth angle with respect to the x axis. (b) A
focused OAM carrying, radially polarized, and ring shaped, partially
coherent incident beam illuminates the glass prism and metal slab
structure to excite the radially propagating SPP modes shown in (a).
(c) Illustration of the polarization state, beam shape, and phase dis-
tribution of a vortex mode with topological charge 1 of the incident
partially coherent beam.

its excitation at a metal-air interface. In Sec. III, we derive
the analytical expressions for the SAM density of a partially
coherent SPP vortex field and assess their implications. In
Sec. IV, we examine the role of the state of optical coherence
and the associated vortex phases of the excitation light on
SAM density modulation. Finally, we summarize our main
findings in Sec. V.

II. FIELD STRUCTURE

The partially coherent SPP vortex field can be excited at
a metal-air interface (z = 0), as depicted in Fig. 1(a), by a
continuum of uniformly distributed, partially correlated SPPs,
launched at a ring of radius a and propagating toward its
center. Each SPP carries an initial phase. Let 0 � θ < 2π

be the azimuth angle with respect to the x axis of an SPP
at angular frequency ω that is excited at point r0(θ ) = −aêρ

and moving in the direction specified by the unit radial vector
êρ = cos θ êx + sin θ êy, where êx and êy are the Cartesian unit
vectors in the xy plane. Omitting the time factor e−iωt , the
electric and magnetic fields of such an SPP then read, at point
r in air, as

E(r, θ ) = E (θ )p̂(θ )eik(θ )·[r−r0 (θ )]+iφ(θ ), (1)

H(r, θ ) = −κ0

Z0
E (θ )êθeik(θ )·[r−r0 (θ )]+iφ(θ ). (2)

Here E (θ ) is a random amplitude at the excitation point,
k(θ ) = k‖êρ + kzêz is the SPP wave vector, with êz being the
unit vector along the z axis, while p̂(θ ) = k̂(θ ) × êθ and êθ =
êz × êρ are the unit normalized polarization vectors of the
electric and magnetic fields, respectively, including k̂(θ ) =
k(θ )/|k|. The wave-vector magnitude |k| does not depend
on θ and differs from the free-space wave number k0 [19].
In Eq. (2), κ0 = k0/|k| and Z0 is the free-space impedance.
The uniform and nonmagnetic metal film supporting the SPPs
is thick enough (e.g., 50–100 nm for Ag [20]) so that mode
overlap across the metal layer is negligible, whereupon the
tangential and normal SPP wave-vector components are given

by [1,21]

k‖ = k0

√
εr

εr + 1
, kz = k0

√
1

εr + 1
. (3)

Above, εr is the (complex, ω-dependent) relative electric per-
mittivity of the metal. The SPP propagation distance lSPP =
1/k′′

‖ , with the double prime denoting the imaginary part,
serves as an upper limit for the ring radius a. Specially, the
factor φ(θ ) in Eqs. (1) and (2) is the initial phase imparted by
the illuminating beam to the SPPs at r0(θ ) and it generates an
SPP vortex phase distribution. The phase difference between
any two SPPs obeys [7]

φ(θ2) − φ(θ1) = m(θ2 − θ1), (4)

where m is an integer, specified by the topological charge of
the exciting source vortex beam.

The correlations among the SPPs are governed by the an-
gular correlation function W (θ1, θ2) = 〈E∗(θ1)E (θ2)〉, where
the angle brackets and the asterisk denote ensemble average
and complex conjugate, respectively. We assume that the SPP
angular correlations are statistically homogeneous [i.e., the
angular correlation function depends only on the angular dif-
ference, W (θ1, θ2) = W (θ2 − θ1)] within the 2π range of θ1

and θ2, and that each SPP carries the same power. It then
follows that [7]

W (θ1, θ2) = ISPP

∞∑
n=−∞

βnein(θ2−θ1 ), (5)

where ISPP denotes the individual SPP field intensity, n is an
integer mode index, and βn is a Fourier coefficient (i.e., a
modal weight). To ensure that W (θ1, θ2) is a genuine cor-
relation function, βn should be real and nonnegative. The
SPP vortex field is fully coherent if, and only if, the Fourier
series in Eq. (5) consists of only one mode. Whenever the
series contains more than a single mode the resulting SPP
vortex field is partially coherent. In general, as the number of
modes in Eq. (5) increases, the SPP vortex field’s coherence
decreases. In the limiting case of a very large number of
modes with identical coefficients (i.e., βn = 1), the SPP an-
gular correlation function (effectively) reduces to W (θ1, θ2) =
2π ISPP δ(θ2 − θ1), where δ(·) is the Dirac delta function. The
SPPs then are completely uncorrelated and the synthesized
SPP vortex fields in any pair of angular directions are mutually
uncorrelated.

The phase profile and angular correlation function in
Eqs. (4) and (5) of the SPP vortex field can be controlled by
using the “plasmon coherence engineering” protocol [4]. As
illustrated in Fig. 1(b), this involves a Kretschmann-like setup
where the metal film deposited on a glass prism is illuminated
by a focused, coherence-engineered, radially polarized beam
carrying OAM, whose cross-spectral density matrix before
focusing is of the form

Win(ρ1, ρ2) =
√

I (ρ1)I (ρ2) ê∗
ρ1

êT
ρ2

∑
n

βnei(m+n)(θ2−θ1 ). (6)

Here ρ1 and ρ2 are two arbitrary position vectors in the trans-
verse plane of the beam, I (ρ) is its intensity (spectral density)
at the radial distance ρ = (x2 + y2)1/2, with a narrow ring
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shape as shown in Fig. 1(c), and T denotes matrix transpose.
The incident partially coherent beam can be viewed as an in-
coherent superposition of a set of completely coherent vortex
modes with identical intensity distributions I (ρ) and polar-
ization directions êρ , but with different topological charges
(m + n) and powers βn. A definite set of βn coefficients for
the angular correlation function in Eq. (5) can be generated
through controlling, for instance, by means of a fast modulator
such as a digital micromirror device [22], the power of each
coherent mode in synthesizing the excitation beam. In practice
the so-called perfect vortex beams [23,24] can be used as the
fully coherent vortex modes due to their shape independence
on the topological charge. Moreover, the spatial degree of
coherence of the beam is controlled by the number of modes n
and their powers βn, and its average OAM per photon is given
by [25]

Lin =
∑

n βn(m + n)∑
n βn

h̄êz, (7)

where h̄ is the reduced Planck constant. After the focusing
the beam can be considered as a continuum of inclined TM-
polarized plane waves [4], with the SPP coupling optimized
by the focusing angle. The SPPs of desired phase profiles and
angular correlations ensuing from the illuminated ring at the
metal-air surface eventually superpose to form the partially
coherent SPP vortex field.

The second-order stochastic properties of the partially co-
herent SPP vortex field are characterized, at points r1 and
r2 in air, by means of the electric and magnetic cross-
spectral density matrices W(E)(r1, r2) = 〈E∗(r1)ET(r2)〉 and
W(H)(r1, r2) = 〈H∗(r1)HT(r2)〉 [26,27], where the terms
E(r) = ∫ 2π

0 E(r, θ )dθ and H(r) = ∫ 2π

0 H(r, θ )dθ are the
electric and magnetic field realizations of the SPP vortex field.
It then follows from Eqs. (1), (2), (4), and (5) that these
two cross-spectral density matrices can be represented via
coherent vector modes as [7]

W(E)(r1, r2) = ISPPπ
2e−2k′′

‖ aei(kzz2−k∗
z z1 )

×
∑

n

βnE∗
n(ρ1)ET

n (ρ2), (8)

W(H)(r1, r2) = 1

Z2
0

ISPPπ
2e−2k′′

‖ aei(kzz2−k∗
z z1 )

×
∑

n

βnH∗
n(ρ1)HT

n (ρ2), (9)

with the electric and magnetic vector modes reading

En(ρ) = {−iκz[Jm+n+1(k‖ρ) − Jm+n−1(k‖ρ)]êρ

−κz[Jm+n+1(k‖ρ) + Jm+n−1(k‖ρ)]êθ

+2κ‖Jm+n(k‖ρ)êz}ei(m+n)θ , (10)

Hn(ρ) = {κ0[Jm+n+1(k‖ρ) + Jm+n−1(k‖ρ)]êρ

−iκ0[Jm+n+1(k‖ρ) − Jm+n−1(k‖ρ)]êθ }
×ei(m+n)θ . (11)

Here κz = kz/|k|, κ‖ = k‖/|k|, Jν (·) is a Bessel function of the
first kind and order ν, and êρ , êθ , and êz form an orthonormal
set in cylindrical coordinates.

It is seen from Eqs. (10) and (11) that any SPP vector mode
has associated with it a vortex phase ei(m+n)θ . The averaged
OAM per photon carried by the partially coherent SPP vortex
field is then found to be [7]

L =
∑

n ξn(m + n)∑
n ξn

h̄êz, (12)

where ξn = [ε0ξ
(E)
n + μ0ξ

(H)
n ]/4 is the total electromagnetic

energy carried by the SPP vector mode of index n, which
corresponds to the topological charge of (m + n). Here,
ξ (E)

n = βnISPPπ
2e−2k′′

‖ a
∫

V e−2k′′
z zET

n (ρ)E∗
n(ρ)d3r and ξ (H)

n =
βnISPPπ

2e−2k′′
‖ a

∫
V e−2k′′

z zHT
n (ρ)H∗

n(ρ)d3r, with
∫

V · d3r de-
noting integration over the volume V of the SPP excitation
region, are the electric and magnetic parts of an individual
mode weight in the coherent mode decomposition of the SPP
vortex field. Further, ε0 is the permittivity and μ0 is the per-
meability of free space.

We find that the OAM structure of the SPP vortex field
in Eq. (12) is akin to that of the incident beam in Eq. (7).
In the fully coherent limit, the two averaged OAMs equal
(m + n)h̄êz. However, in a partially coherent scenario, the
averaged OAMs of the illumination beam and of the SPP
vortex field are not, in general, equal to each other. This is due
to the fact that the incident beam’s OAM power distribution
is determined entirely by βn, whereas for the SPP vortex field
it is specified by ξn, which involves βn and the vector-mode
intensity distribution. Even if the OAM of the incident beam
vanishes, the partially coherent SPP vortex field may carry a
nonzero OAM. For example, if the incident beam of m = 0
contains three modes with indices n = {−3, 1, 2} and the
corresponding βn = 1, its averaged OAM is zero. Yet, the av-
eraged OAM of the excited partially coherent SPP vortex field
is L = [(−3ξ−3 + ξ1 + 2ξ2)/(ξ−3 + ξ1 + ξ2)] h̄êz 	= 0. Nev-
ertheless, whenever the modal powers satisfy the relation
βn = β−n−2m, i.e., with a symmetric OAM power distribution
with respect to zero topological charge, both the incident
beam and the excited partially coherent SPP vortex field carry
no averaged OAM.

On comparing the vector modes of the partially co-
herent SPP vortex field in Eqs. (10) and (11) with the
electric and magnetic fields of an SPP constituent given
by Eqs. (1) and (2), we find that the synthesized vortex
field has an additional azimuthal component in its electric
field realization and an additional radial component in its
magnetic field realization. It follows from the Bessel func-
tion properties, namely Jm+n+1(k‖ρ) + Jm+n−1(k‖ρ) = 2(m +
n)(k‖ρ)−1Jm+n(k‖ρ), that these extra field components are
induced by the topological charge of the vortex phase car-
ried by each vortex mode of the partially coherent incident
beam. Hence, the additional components vanish only under
the conditions m + n = 0 (no vortex carried by a fully coher-
ent incident beam) and βn = β−n−2m in the case of a partially
coherent incident beam. As we saw above, the latter condition
implies that neither the incident beam nor the excited SPP
vortex field carry any averaged OAM.

III. SPIN STRUCTURE

The electric and magnetic SAM densities of the partially
coherent SPP vortex field at a point r in air can be assessed
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by ensemble averaging over the SAM densities of the (time-
averaged) monochromatic field realizations:

S(E)(r) = ε0

4ω
〈E∗(r) × E(r)〉′′, (13)

S(H)(r) = μ0

4ω
〈H∗(r) × H(r)〉′′. (14)

As before, here the double prime stands for the imaginary
part, E(r) = ∫ 2π

0 E(r, θ )dθ , and H(r) = ∫ 2π

0 H(r, θ )dθ . It
then follows from Eqs. (1), (2), (4), (5), and (8)–(11) that the
above SAM densities of the SPP vortex field can be written in
terms of the vector coherent modes as

S(E)(r) = S0(z)

[∑
n

βnE∗
n(ρ) × En(ρ)

]′′
, (15)

S(H)(r) = S0(z)

[∑
n

βnH∗
n(ρ) × Hn(ρ)

]′′
, (16)

where S0(z) = (4ω)−1ε0ISPPπ
2e−2k′′

‖ a−2k′′
z z. Substituting the

electric and magnetic vector modes from Eqs. (10) and (11)
into Eqs. (15) and (16), respectively, yields

S(E)(r) = S0(z)
[
S(E)

ρ (ρ)êρ + S(E)
θ (ρ)êθ + S(E)

z (ρ)êz
]
, (17)

S(H)(r) = S0(z)S(H)
z (ρ)êz, (18)

where the various contributions have the forms,

S(E)
ρ (ρ) = 8(κzκ

∗
‖ /k‖)′′

∑
n

βn(m + n)|Jm+n(k‖ρ)|2/ρ, (19)

S(E)
θ (ρ) = −4(κ∗

z κ‖)′′
∑

n

βn{J∗
m+n(k‖ρ)

×[Jm+n+1(k‖ρ) − Jm+n−1(k‖ρ)]}′′

−4(κ∗
z κ‖)′

∑
n

βn{J∗
m+n(k‖ρ)

×[Jm+n+1(k‖ρ) − Jm+n−1(k‖ρ)]}′, (20)

S(E)
z (ρ) = −2|κz|2

∑
n

βn[|Jm+n+1(k‖ρ)|2 − |Jm+n−1(k‖ρ)|2],

(21)

S(H)
z (ρ) = −2κ2

0

∑
n

βn[|Jm+n+1(k‖ρ)|2 − |Jm+n−1(k‖ρ)|2].

(22)

In the above expressions the prime denotes the real part.
Equations (17)–(22) are the key results of this work that lead
to several instructive conclusions.

First, the radial and normal spin components S(E)
ρ (ρ),

S(E)
z (ρ), and S(H)

z (ρ) are directly produced by the additional
contributions induced by the vortex phase into the vector
modes comprising the partially coherent SPP vortex field.
These spin components are thus closely linked to the vortex
phase embedded in the incident light beam. Whenever the
incident beam is completely coherent and carries no vortex
phase, or if the beam is partially coherent with the modal
powers obeying βn = β−n−2m, then the excited SPP field has
neither radial nor normal spin: S(E)

ρ (ρ) = S(E)
z (ρ) = S(H)

z (ρ) =
0. Otherwise these spin components of the SPP vortex field are

nonzero and their properties can be engineered via controlling
the statistical and OAM characteristics of the illumination.

Second, we find that the radial spin component S(E)
ρ (ρ)

in Eq. (19) originates exclusively from the electric field. Its
existence relies not only on the induced vortex phase but also
on the complex SPP wave vector and thus on the evanescent
nature of the SPP field: (κzκ

∗
‖ /k‖)′′ 	= 0. For a free-space

propagating or a tightly focused vortex beam with real wave
vectors such a radial spin component does not exist (see, e.g.,
[15,28]).

Third, as shown by Eqs. (21) and (22), both the electric and
the magnetic field induce normal spin components. The re-
spective components S(E)

z (ρ) and S(H)
z (ρ) have the same spatial

distribution but different weights that obey S(E)
z (ρ)/S(H)

z (ρ) =
|κz|2/κ2

0 . This ratio is much smaller than unity for typical
plasmonic materials (e.g., Ag and Au at optical frequencies
[29]), and thus the normal spin component of the SPP vortex
field is mainly due to the magnetic field.

And fourth, the partially coherent SPP vortex field has an
azimuthal spin component S(E)

θ (ρ) which is generated solely
by the electric field. This component points perpendicular
to the propagation direction êρ of each SPP constituent, i.e.,
parallel to the intrinsic transverse spin of a single SPP [18,30]:

S(r, θ ) = 2(κ∗
z κ‖)′′π−2S0(z)e−2k′′

‖ (cos θx+sin θy)êθ . (23)

The transverse spin arises from the complex nature of the
SPP wave vector that renders the electric field elliptically
polarized in the propagation plane, with no counterpart for
a homogeneous plane wave having a real wave vector. The
first term in Eq. (20) of the SPP vortex field, which we de-
note by [S(E)

θ ]1, is similar to the single SPP transverse spin
of Eq. (23) in the sense that [S(E)

θ ]1 ∼ (κ∗
z κ‖)′′. But the SPP

vortex field carries also another azimuthal spin component,
viz., the second term [S(E)

θ ]2 ∼ (κ∗
z κ‖)′ in Eq. (20), not found

in the single SPP case of Eq. (23). This term arises from
correlations among the SPP modes and vanishes only if the
incident beam is fully incoherent. In such a limiting case the
entire SAM density of the SPP vortex field is specified by
[S(E)

θ ]1 = −8(κ∗
z κ‖)′′I1(2k′′

‖ρ), where I1(2k′′
‖ρ) is the modified

Bessel function of the first kind and of order 1, corresponding
to an incoherent superposition of the single SPP transverse
spins in Eq. (23). In general, however, the spin component
[S(E)

θ ]2 induced by the SPP correlations is nonzero and it can
be the dominant term, as we demonstrate in Sec. IV. We notice
further that the existence of [S(E)

θ ]2 in Eq. (20) relies entirely
on a rigorous treatment which accounts for the physically
ever-present metal losses; considering an idealized metal with
no absorption results in (κ∗

z κ‖)′ = 0 and thereby [S(E)
θ ]2 = 0.

IV. EFFECTS OF COHERENCE

Equations (19)–(22) indicate that the state of optical coher-
ence of the incident light beam can play an important role in
controlling the SAM density properties. To demonstrate this,
we illustrate in Fig. 2 the spatial distributions of the spin com-
ponents S(E)

ρ (ρ), S(E)
θ (ρ), S(E)

z (ρ), and S(H)
z (ρ) of the SPP vortex
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FIG. 2. Spatial distributions of the spin components S(E)
ρ (ρ), S(E)

θ (ρ), S(E)
z (ρ), and S(H)

z (ρ) associated with the partially coherent SPP vortex
fields, at an Ag-air interface at free-space wavelength λ = 632 nm, excited by an incident light beam of varying number of coherent modes
and averaged OAM: (a) The incident beam contains a single mode of index n = 0 and weight β0 = 1, the averaged OAM is 2h̄; (b) the incident
beam contains three modes of index n ∈ {−3, −2, −1} and the corresponding weights βn = 1, the averaged OAM is 0; (c) the incident beam
contains 11 modes of index n ∈ {−5, ..., 5} and the corresponding weights βn = 1, the averaged OAM is 2h̄; (d) the incident beam contains 11
modes of index n ∈ {−9, ..., 1} and the corresponding weights βn = 1, the averaged OAM is −2h̄. The topological charge of the incident light
beam in all cases is fixed at m = 2 and the excitation ring radius a equals the SPP propagation length lSPP. The relative permittivity of Ag is
taken from empirical data [29].

fields excited at an Ag-air interface by an incident light beam
with a varying number of coherent modes and averaged OAM.
The topological charge of the incident beam is fixed at m = 2
and the excitation ring radius a equals the SPP propagation
length lSPP = 1/k′′

‖ at the considered free-space wavelength
λ = 632 nm. First of all, in Fig. 2(a) we display the spin com-
ponents of the SPP vortex field generated by a fully coherent
incident beam consisting of a single lowest-order mode with
index n = 0. The source beam therefore carries a vortex phase
ei2θ and has the average OAM of 2h̄ per photon [Eq. (7)]. In
this totally coherent case, one observes that the vortex phase
indeed creates SAM density terms both parallel and normal to
the interface, with the vortex-induced spin components S(E)

ρ (ρ)
and S(H)

z (ρ) being dominant.

Next we consider the spin properties of partially coherent
SPP vortex fields by increasing the number of modes. In
Fig. 2(b), the source beam contains three coherent modes
of indices n ∈ {−3,−2,−1} and of equal weights βn = 1.
Although the coherent modes individually carry nonzero vor-
tex phases, their incoherent superposition results in a zero
averaged OAM both for the incident beam [Eq. (7)] and for
the excited SPP field [Eq. (12)]. Therefore, contrary to the
fully coherent scenario in Fig. 2(a), for the partially coher-
ent case in Fig. 2(b) the vortex-induced spin components
S(E)

ρ (ρ), S(E)
z (ρ), and S(H)

z (ρ) vanish, whereas the azimuthal

term S(E)
θ (ρ) becomes dominant. On further decreasing the

coherence of the source beam by increasing the number of
modes to 11, and taking the mode indices n ∈ {−5, ..., 5}

063511-5



CHEN, NORRMAN, PONOMARENKO, AND FRIBERG PHYSICAL REVIEW A 103, 063511 (2021)

FIG. 3. Spatial distributions of the first term [S(E)
θ ]1 and the second term [S(E)

θ ]2 of the azimuthal spin component S(E)
θ (ρ) in Eq. (20) for the

partially coherent SPP vortex fields of Fig. 2.

and n ∈ {−9, ..., 1}, we show the associated SAM density
behavior in Figs. 2(c) and 2(d), respectively. All the modes
carry the same power as before. The averaged OAM of
the incident light beams in Figs. 2(c) and 2(d) is 2h̄ and
−2h̄, respectively, thus having equal magnitude but oppo-
site signs. As observed from Figs. 2(c) and 2(d), the spin
components S(E)

ρ (ρ), S(E)
z (ρ), and S(H)

z (ρ) of the SPP vortex
fields switch their sign as well, but their azimuthal spin com-
ponents S(E)

θ (ρ) are independent of the topological charge
sign and hence display the same distribution. We note that
the specific values for βn used in Fig. 2 are for illustrative
purposes. In general they can be any real numbers in the range
βn � 0.

Furthermore, we infer from Fig. 2 that the oscillations
in the spatial distribution of S(E)

θ (ρ) gradually decrease with
lowering the optical coherence of the incident beam. This
behavior can be understood by examining the terms [S(E)

θ ]1 ∼
(κ∗

z κ‖)′′ and [S(E)
θ ]2 ∼ (κ∗

z κ‖)′ in Eq. (20), with the former
resembling the transverse spin of a single SPP [Eq. (23)] while
the latter having no such correspondence. As explained in
Sec. III, for a totally incoherent source the individual SPPs
do not interfere and the SAM density of the SPP vortex field
is entirely due to the first term [S(E)

θ ]1 = −8(κ∗
z κ‖)′′I1(2k′′

‖ρ).
Hence, when the degree of optical coherence gets low, the SPP
interference is weak and the azimuthal spin component of the
SPP vortex field behaves roughly as such a nonoscillating, in-
coherent superposition of transverse spins of the SPP modes.
However, when the coherence of the incident beam increases,
the correlations among the SPP modes become stronger and
the contribution of the emerging second term [S(E)

θ ]2 to the
total azimuthal spin S(E)

θ (ρ) is no longer negligible. Figure 3
illustrates this previously uncharted behavior, from which we
observe that for a sufficiently high degree of coherence it is the
correlations-induced contribution [S(E)

θ ]2, instead of [S(E)
θ ]1,

which becomes the dominant term and produces the spatial
oscillation of S(E)

θ (ρ).

V. CONCLUSIONS

We have studied the spatial distribution of the SAM density
associated with a partially coherent SPP vortex field excited
by a coherence-tailored radially polarized vortex beam at a
metal-air interface in the classic Kretschmann-type configura-
tion. We found that such an SPP vortex field possesses spin
components both along the interface plane and normal to it
and they are all intimately related to the vortex phase carried
by each coherent mode of the partially coherent incident light
beam. The spin components in the interface plane, both ra-
dial and azimuthal, involve only the electric-field correlations,
whereas the normal spin component is mostly due to the
magnetic-field correlations.

We showed specifically that the radial and normal spin
components vanish only in the cases when the incident beam
carries no vortex phase or when the incident beam is com-
posed of a set of vortex modes with a symmetric OAM
spectrum distribution with respect to the zero topological
charge. We also demonstrated that the SPP vortex field dis-
plays an azimuthal spin vortex distribution, i.e., it contains an
azimuthal spin component with radial symmetry. However,
unlike the transverse spin carried by a single SPP, the az-
imuthal spin of the synthesized SPP vortex field is composed
of two parts: a term originating from the complex nature of the
SPP wave vector and a previously undiscovered term induced
by the electric-field correlations, which can be the dominant
contribution in the case of strong interference. Further, we
showed that the optical coherence of the incident beam plays
an important role in controlling the SAM density distribution
of the partially coherent SPP vortex field. In particular, we
demonstrated that by adjusting the light source coherence,
the vortex phase induced radial and normal spin components
can be turned on and off and the spin signs can be switched.
Our findings can find applications in plasmonic spin-orbit
interactions and optical near-field tweezing [31,32], and they
are expected to facilitate further advances in this rapidly de-
veloping field.
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